196 research outputs found

    On the Satisfiability Threshold and Clustering of Solutions of Random 3-SAT Formulas

    Full text link
    We study the structure of satisfying assignments of a random 3-SAT formula. In particular, we show that a random formula of density 4.453 or higher almost surely has no non-trivial "core" assignments. Core assignments are certain partial assignments that can be extended to satisfying assignments, and have been studied recently in connection with the Survey Propagation heuristic for random SAT. Their existence implies the presence of clusters of solutions, and they have been shown to exist with high probability below the satisfiability threshold for k-SAT with k>8, by Achlioptas and Ricci-Tersenghi, STOC 2006. Our result implies that either this does not hold for 3-SAT or the threshold density for satisfiability in 3-SAT lies below 4.453. The main technical tool that we use is a novel simple application of the first moment method

    The Middle Way versus Extremism

    Get PDF
    Extremism is a perennial problem in our civilisation. It has constantly impeded our progress by leading to unnecessary wars, conflicts, enmity and hatred. Understanding the middle way between these two extremes helps us to clarify what extremism is and how it arises. Such an understanding can be made part of the education system so that children are taught from an early age to detect extremist tendencies in their own thinking and to control them for their own good and the good of society. This paper extends the views expressed in my book, The Promise of Dualism (Almostic Publications) and other papers on the subject of extremism. It is focused on the following table which shows how the middle way stands between the extremes of too much power and too much belief. After the introduction, the rest of this paper explicates this table’s contents in considerable detail – line by line and word by word – in explanatory notes

    Random-Cluster Dynamics in Z2\mathbb{Z}^2

    Full text link
    The random-cluster model has been widely studied as a unifying framework for random graphs, spin systems and electrical networks, but its dynamics have so far largely resisted analysis. In this paper we analyze the Glauber dynamics of the random-cluster model in the canonical case where the underlying graph is an n×nn \times n box in the Cartesian lattice Z2\mathbb{Z}^2. Our main result is a O(n2logn)O(n^2\log n) upper bound for the mixing time at all values of the model parameter pp except the critical point p=pc(q)p=p_c(q), and for all values of the second model parameter q1q\ge 1. We also provide a matching lower bound proving that our result is tight. Our analysis takes as its starting point the recent breakthrough by Beffara and Duminil-Copin on the location of the random-cluster phase transition in Z2\mathbb{Z}^2. It is reminiscent of similar results for spin systems such as the Ising and Potts models, but requires the reworking of several standard tools in the context of the random-cluster model, which is not a spin system in the usual sense

    The Ising Partition Function: Zeros and Deterministic Approximation

    Full text link
    We study the problem of approximating the partition function of the ferromagnetic Ising model in graphs and hypergraphs. Our first result is a deterministic approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters β\beta (the interaction) and λ\lambda (the external field), except for the case λ=1\vert{\lambda}\vert=1 (the "zero-field" case). A randomized algorithm (FPRAS) for all graphs, and all β,λ\beta,\lambda, has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the "decay of correlations" property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this extension, we establish a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.Comment: clarified presentation of combinatorial arguments, added new results on optimality of univariate Lee-Yang theorem

    Spatial mixing and approximation algorithms for graphs with bounded connective constant

    Full text link
    The hard core model in statistical physics is a probability distribution on independent sets in a graph in which the weight of any independent set I is proportional to lambda^(|I|), where lambda > 0 is the vertex activity. We show that there is an intimate connection between the connective constant of a graph and the phenomenon of strong spatial mixing (decay of correlations) for the hard core model; specifically, we prove that the hard core model with vertex activity lambda < lambda_c(Delta + 1) exhibits strong spatial mixing on any graph of connective constant Delta, irrespective of its maximum degree, and hence derive an FPTAS for the partition function of the hard core model on such graphs. Here lambda_c(d) := d^d/(d-1)^(d+1) is the critical activity for the uniqueness of the Gibbs measure of the hard core model on the infinite d-ary tree. As an application, we show that the partition function can be efficiently approximated with high probability on graphs drawn from the random graph model G(n,d/n) for all lambda < e/d, even though the maximum degree of such graphs is unbounded with high probability. We also improve upon Weitz's bounds for strong spatial mixing on bounded degree graphs (Weitz, 2006) by providing a computationally simple method which uses known estimates of the connective constant of a lattice to obtain bounds on the vertex activities lambda for which the hard core model on the lattice exhibits strong spatial mixing. Using this framework, we improve upon these bounds for several lattices including the Cartesian lattice in dimensions 3 and higher. Our techniques also allow us to relate the threshold for the uniqueness of the Gibbs measure on a general tree to its branching factor (Lyons, 1989).Comment: 26 pages. In October 2014, this paper was superseded by arxiv:1410.2595. Before that, an extended abstract of this paper appeared in Proc. IEEE Symposium on the Foundations of Computer Science (FOCS), 2013, pp. 300-30

    Mobile Geometric Graphs: Detection, Coverage and Percolation

    Full text link
    We consider the following dynamic Boolean model introduced by van den Berg, Meester and White (1997). At time 0, let the nodes of the graph be a Poisson point process in R^d with constant intensity and let each node move independently according to Brownian motion. At any time t, we put an edge between every pair of nodes if their distance is at most r. We study three features in this model: detection (the time until a target point---fixed or moving---is within distance r from some node of the graph), coverage (the time until all points inside a finite box are detected by the graph), and percolation (the time until a given node belongs to the infinite connected component of the graph). We obtain precise asymptotics for these features by combining ideas from stochastic geometry, coupling and multi-scale analysis

    Random lattice triangulations: Structure and algorithms

    Get PDF
    The paper concerns lattice triangulations, that is, triangulations of the integer points in a polygon in R2\mathbb{R}^2 whose vertices are also integer points. Lattice triangulations have been studied extensively both as geometric objects in their own right and by virtue of applications in algebraic geometry. Our focus is on random triangulations in which a triangulation σ\sigma has weight λσ\lambda^{|\sigma|}, where λ\lambda is a positive real parameter, and σ|\sigma| is the total length of the edges in σ\sigma. Empirically, this model exhibits a "phase transition" at λ=1\lambda=1 (corresponding to the uniform distribution): for λ<1\lambda<1 distant edges behave essentially independently, while for λ>1\lambda>1 very large regions of aligned edges appear. We substantiate this picture as follows. For λ<1\lambda<1 sufficiently small, we show that correlations between edges decay exponentially with distance (suitably defined), and also that the Glauber dynamics (a local Markov chain based on flipping edges) is rapidly mixing (in time polynomial in the number of edges in the triangulation). This dynamics has been proposed by several authors as an algorithm for generating random triangulations. By contrast, for λ>1\lambda>1 we show that the mixing time is exponential. These are apparently the first rigorous quantitative results on the structure and dynamics of random lattice triangulations.Comment: Published at http://dx.doi.org/10.1214/14-AAP1033 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamics of Lattice Triangulations on Thin Rectangles

    Get PDF
    We consider random lattice triangulations of n×kn\times k rectangular regions with weight λσ\lambda^{|\sigma|} where λ>0\lambda>0 is a parameter and σ|\sigma| denotes the total edge length of the triangulation. When λ(0,1)\lambda\in(0,1) and kk is fixed, we prove a tight upper bound of order n2n^2 for the mixing time of the edge-flip Glauber dynamics. Combined with the previously known lower bound of order exp(Ω(n2))\exp(\Omega(n^2)) for λ>1\lambda>1 [3], this establishes the existence of a dynamical phase transition for thin rectangles with critical point at λ=1\lambda=1
    corecore